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Abstract

The paper addresses an elastostatic problem concerning an elliptical disk embedded in a transversely isotropic space.
The disk is assumed to be absolutely rigid and in perfect contact with the medium. Then, the problem addressed consists
of finding the elastic field in the medium when the disk is given a small shift along the direction perpendicular to its
plane. Using the theory of two-dimensional Fourier transforms, the problem is reduced to a two-dimensional integral
equation. Closed-form solution to this equation is obtained by using Ferrers—Dyson’s and Galin’s theorems. Explicit
expressions are deduced for the displacements and stresses in the entire plane of the disk. Closed-form solution for the
stress intensity factors near the edge of the disk is then extracted. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problems of cracks and inclusions in deformable solids have long been remaining as the subject matter of
special interest to researchers from various areas such as mechanics, applied mathematics and materials
science, because of the obvious practical applications of their solutions to the issues concerning strength
degradation of solids containing cracks and inclusions. Much of the investigations done so far in this area
are well-documented in the monographs by Panasyuk (1969), Galin (1976), Kassir and Sih (1975), Che-
repanov (1979), Panasyuk et al. (1986), Mura (1987), Fabrikant (1991), Ting (1994), Phan-Thien and Kim
(1994) and in the recent articles by the present author (Rahman (1999a,b,c; 2000a,b)). However, the bulk of
the research in this direction is concerned with cracks and inclusions in isotropic materials. The related
problems for anisotropic materials have been studied to a lesser extent, mainly because of the more
complicated nature of their constitutive behaviors. However, in the case of transversely isotropic materials
whose constitutive behaviors may be described by five independent elastic constants, solutions of a large
number of crack and inclusion problems can be found.
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Of concern in the present article is the problem of determining the stress distribution in a transversely
isotropic solid when a rigid elliptical disk embedded in it is given a small, constant shift along the direction
perpendicular to its plane. It is assumed that the disk is in perfect contact with the medium. Using the
theory of two-dimensional Fourier transforms, the problem is reduced to a two-dimensional integral
equation. Closed-form solution of the integral equation is then deduced by using the theorems of Ferrers—
Dyson and Galin — an extremely powerful tool in the theory of Newtonian potentials. A systematic use of
this tool is capable of eliminating in toto the need to use the complicated apparatus of elliptical coordinates
and elliptical harmonics — a topic first brought into the realm of mixed boundary value problems of
elasticity by Lure (1939) (see also Lure (1964)), Galin (1947), and Green and Sneddon (1949). As we will see
in the sequel, the use of Ferrers—Dyson’s and Galin’s theorems has certain unquestionable advantages in
point of greater clearness and understanding of the physical quantities, being given in Cartesian form.
Closed-form expressions for the displacements and stresses in the plane of the disk are then derived. It has
been further shown that the amplification of the local stresses near the edge of the disk can be described by
a coefficient similar to the mode-II stress intensity factor in linear fracture mechanics. Explicit expression
for this factor is then extracted.

It is worth mentioning at this point that the corresponding problem for an isotropic solid for the case
where the disk is of the shape of a penny was solved by Collins (1962). It was probably Kassir and Sih
(1968) who first solved the problem for the case where the disk is of the shape of an ellipse. Following Green
and Sneddon (1949) and their own earlier work (1966), these authors used elliptical coordinates and el-
liptical harmonics for the Laplace operator to solve the problem. The solution of our problem is found to
be in perfect agreement with Collins’ and Kassir and Sih’s.

The results for the stress intensity factors obtained in the article are important in the sense that they can
be used, in conjunction with a failure criterion, to predict the critical failure load and the initiation of crack
propagation near the edge of the disk in a manner similar to that proposed by Panasyuk and Andreikiv
(1967).

We begin by introducing the notation that we shall make use of. We shall denote the operator of the
2-dimensional Fourier transform by £ and its inverse by F; so that F; is defined by

Blf (x); 4] =f(a) = % sz()—c)e—i(a.x)dx

and F; by

. — _ — 1 x— —i(a-x —
R @) = 1) =5 [ f@e *ds
[ R2
where i = v/—1 is the imaginary unit, ¥ = (x,y) € R?, & = (a1, %) € R? and & - X = oyx + oy (Section 2.13 of

Sneddon (1972)).
We write the convolution theorem in the form

FIf(2)g(@);x = (f 0 g) (%),
where (f o g)(%) is defined by

(F 08)5) = 57 [ 6 = 5ohglin)do

2. Potential representation for transversely isotropic bodies

In this section, we give a very brief outline of the potential solutions for solids characterized by trans-
verse isotropy as developed by Elliott (1948, 1949). A convenient for our purpose summary of the basic
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results in this regard can be found in Rahman (1999a,b,c). Consider a transversely isotropic body occu-
pying the space (|x| < oo, [y| < 00, |z] < 00). Further, assume that the axis of symmetry coincides with the
z-axis. Under these assumptions, it was shown by Elliott (1948, 1949; see also Green and Zerna (1968)) that
the equations of equilibrium and the compatibility equations for a transversely isotropic solid can be re-
duced to some Laplace-type equations involving three potential functions, y, (« = 1,2,3):

> o’
(V3455 o m
where
62 62 2644
2
= — _— = 2
Vi oz ?’ N e —cn’ .

and sy, s, are the roots of the equation
cricaus® + {c13(2cas + c13) — cricas}s + czcas = 0, (3)

and ¢;; are the five elastic constants of the transversely isotropic solid. The physical foundations of these
constants and their numerical values for a wide range of transversely isotropic materials are discussed at
great length in Huntington (1964).

In terms of y,, the components of the displacement vector and stress tensor are given by

B 0 03 B 0 0y
“—a(ll‘*‘/{z)‘*‘—ay’ U—ay(X1+X2) o’
O 0x» : 62}51
w = kl oz + k2 oz P 0, = ;:1 (kaC33 — SaCB) @,
2 2 2 (4)
/3 75(
0y, Cyq4 - + (1 +koc) }7
! { 0x0 ; 0y0
n, 2 /
3 o
Ozx C44{a aZ+a§:l(1+k&)a D }’
where
k, = CliSy — Ca4 _ (c13 + caq)ss ~1,2. (5)

b)
C13 + Caa €33 — C44Sy

The remaining stress components are not listed above, because we shall not need them in the subsequent
analysis. Using the argument that for real materials the strain energy density function should be always
positive definite, Lekhnitskii (1963) showed that the roots of the Eq. (3) may be either real (with the same
sign) or complex conjugates, but they can never be purely imaginary. Furthermore, in order to ensure that
the displacements and the stresses are single-valued, it is necessary to adopt a convention, in the event sy, s,
are negative or complex conjugates, on which branch of the multi-valued functions /s7, /s> should be
taken. In this article, we choose to take those branches, which have positive real parts.

3. Formulation of the problem

Consider an unbounded transversely isotropic medium in the interior of which there is an elliptical disk
which is assumed to be perfectly rigid. Complete bonding is assumed to exist between the medium and the
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disk. We introduce a Cartesian coordinate system O x y z such that the plane of disk coincides with the
plane z = 0 and the elliptical bonded contact region Q between the disk and the medium is given by the
relations: z =0, V(x,y) € x*/a® +)*/b* — 1 <0(a > b). We denote by Q the compliment of Q in the plane
z = 0. Furthermore, the upper and lower faces of the disk will be denoted by €, and ©_, respectively, so
that Q =Q, UQ_,and Q = Q, U Q_. The disk is given a small constant shift wy normal to its plane, i.e. the
plane z = 0. ' It is clear that the normal displacement w(x, y,z) in the resulting elastic field will be an even
function in z. Hence, the potential functions y, (¢« = 1,2,3) are odd in z, and so are the quantities u(x, y, z),
v(x,y,z2), 0..(x,y,z). It therefore follows that all the quantities that are odd in z must vanish on the plane
z = 0. In view of these observations, we can restrict the analysis to the upper half-space z > 0 only, in which
case the following boundary conditions must be satisfied:

u(x,y,0)=0,  (x,»)€Q,UQ,,

U(xaya ) (X,y) €Q+U§+7
W(x7ya ) = Wo, (X,y) € Q+7
Uzz(xvyﬂ ) (X,y) € ‘Q+'

Besides, the solution of the problem must satisfy the regularity condition at infinity to ensure a de-
caying elastic field. More specifically, it is required that the displacement field be of O(R™') as R =
\/x2 + 32 + z2 — oo. Furthermore, in order to ensure that the solution of the problem be unique, it must
satisfy the edge condition which states that the elastic energy stored in any neighborhood of the edge of the
disk should be finite. It can be shown that this amounts to require that in the neighborhood of the edge,
none of the field quantities grow more rapidly than »~'**(r = \/x2 + »?) with ¢ > 0 as » — 0. Strictly
speaking, it is not necessary to know a priori, the exact value of ¢ but only its lower bound, which is greater
than zero, in order to derive a unique solution of the equilibrium equations. In many instances, however, it
is convenient to have a prior knowledge of ¢, which can be gained by using different methods, for instance,
by the method of Hartranft and Sih (1969).

(6)

4. Solution

A suitable solution of Eq. (1) satisfying the regularity condition at infinity is given by
1,(6,0,2) = F A (@)e 7 ], 7)

where m; = \/(a? + o3)/s;, and 4; (j =1,2,3) are some unknown functions to be determined using the
boundary conditions of the problems.

With Eq. (7), we obtain the following expressions:

(o, 0,0) = —i(a1d; + 014y + 0ds),
O(ay, 02,0) = —i(0pd1 + 00y — 01 43),
w(ay, 02,0) = —kymidy — komaAy, ®)
Gz (01,02, 0) = icas[(1 + ky)oymi Ay + oamzds + (1 + ka)oymaAs],
6o, 00,0) = icaa[(1 4 ky)oamiA; + (1 + k) oamady — oymsds),
Gzz( ,sz,o) (le'B - SlCIS)m A+ (k20%3 - Szcls)mzAz

! The amount of the shift must be small enough to justify the use of the equations of linearized elasticity.



M. Rahman | International Journal of Solids and Structures 38 (2001) 3965-3977 3969

We introduce the notations

p(xy) =0:(x,0),  pa(x,2,0) = 0,:(x,2,0),  ps(x,y) = 0=(x,2,0).
Then, using Eq. (8) and invoking the first two boundary conditions in Eq. (6), we deduce that
" P30, )

Vi +o3
- . o py(ag, o
(o, 0) = 11"2%, ©)
Voy+ o
o5 (011, o)

p =il
p2((x1’a2) 2 \/m ’

W(O(l,OQ,O) Fl

where

I = C44\/W(k2\/§— k1\/5) r,= C44 L( +k1)52\/— ( +k2)sl\/—J (10)

033(k132 - k2S1) ' 33 (klsz kZSl)

Using the convolution theorem for Fourier transforms, from the Eq. (9), we have

P3(x0, )0) xo,yo
dx,d
W(xayv 27’56’44/ / 0,
(x,y) = —Fz / / p3(x0;0) XanO do dy (11)
P 21 Ox 0T
- *Fz P3(X0, o) xo,yo
pon =520 [ dxodp,

where R = \/(x —x0)" 4 (v — ).
Using Eq. (1) in Eq. (11) and invoking the third and fourth boundary conditions in Eq. (6), we arrive at
the following two-dimensional integral equation to determine the unknown interfacial normal stresses:

2
/ /IM dxodyy = ?C44W07 (x,y) € Q4. (12)
.

1

By analogy, Eq. (12) represents the Newtonian potential of an elliptical disc whose mass distribution is
characterized by the surface mass density p;(x,y). Therefore, the entire rich arsenal of the theory of the
Newtonian potential of an elliptical disk, in particular, the theorems of Ferrers—Dyson (Dyson (1891)) and
Galin (1947) can be employed to solve the integral equation (12). A convenient synopsis of Ferrers—Dyson’s
and Galin’s theorems, their inter-relationships and some further extensions are given in Rahman (1999b,
2000c¢). Using these works, we represent the solution of Eq. (12) in the following form:

A

I(x,y)’
where A4 i1s an unknown constant to be determined and

p3(x’y) = (13)

xZ y2

Putting Eq. (13) into the Eq. (12), we have

dxodyy 2
/ / dl TCC44W0, (x1,%) € Q.. (14)
Q4

xm)’o I,
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As per Dyson’s theorem (Dyson (1891), Rahman (2000c)), we have

doxo dyp )
=mabl;’, 15
/m / xo,J/o 0 ( )

where
_ / dy
C@ e )y
Egs. (15) and (16) are valid for the exterior of the disk, but they are also valid for points lying in the interior

of the disk, i.e. (x,y) € Q, provided A is assumed to be equal to zero. A
Recurrence relations were developed for evaluating closed-form expressions for I,-(j” for all i,j > 0 (see

(16)

Rahman (2000c). The starting value for the recurrence relations is Iéé) which is evaluated in closed form
(Gradshteyn and Ryzhik, 1994):

_F(ﬂae)7 (17)

where F(f,e) is the incomplete elliptic integral of the first kind, e = /1 — (b/a)” is the eccentricity of the
ellipse and

A
/3 = cotfli’ (18)
a
where
2,2 2 12
;L:x +y —a"—b ++vD (19)
2
and
32
D=+ —d-bp) +42b2( +ﬁ—1). (20)

As stated above, for (x,y) € Q, 2 = 0 and hence, by Eq. (18), f = n/2. Therefore, for this case, Eq. (17)
reduces to

2
Iy =~K(e), 1)

where K (e) is the complete elliptic integral of the first kind. Putting Eq. (21) into Egs. (15) and (14), we find
that the constant A4 is given by

_ WoC44
bK(e)F1

(22)

Now, putting Eq. (22) into Eq. (13), we obtain the formula for normal stresses in the region occupied by the
disk:

) ~1)2
wo X2y
ey (Y Q.. 23
p(x,) C44bK(e)F1( 2 bz) ) (x,y) € 2, (23)

On the other hand, the normal displacement outside the disk is found by putting Eq. (23) into the first
equation in Eq. (11) with the result
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dxo dyp ~
W(xayao 2TEbK / / 5 )C y) € Q+' (24)

xm)’o

Using the Egs. (15) and (17), Eq. (24) is cast in the final form:

Wo I(/L) (ﬁv e)

3K (@) ® ~ Ke) wo,  (x,y) € Q. (25)

w(x,y,0) =

Putting Eq. (23) into the second and third equations in Eq. (11), we derive the following formulae for the
shearing stresses

07 @ (x7y) € Q+a
woa O 0O
pi(xay) = C44F; 0 K(e) f‘?(o = (x’y) € Q+ ) (i = 172)7 (26)
C44F3 — wa 0L ()C,y) € .Q+

2K (e)/ (a+7) (B2+7)i i
where x; = x, x, = y and

Iy (1+k)say/si — (1 +k2)S1\/~

_12 (27)
Fl \/S1852 (kz\/_ kl\/_)
From Eq. (19), we have
04 2x(a3 ,+ ) ~
— =t 7 Q 2
o N (x,y) € @, (28)
where a; = a, a, = b.
In view of Eq. (28), Eq. (26) is cast in the following final form:
07 (X,y) € ‘Q+a
pilx.y) = c44F3”°‘;1 —ASE;ZA)’ (i not summed), (x,y) € Q. ( ((=12). (29)
Thus, the final solution of the problem is as follows:
w(x,y,0 (ﬁ’ )W(), (x,y) € Q.
(xﬂy) € Qi7
xw a az A Pt i= 1) 2 ) 30
carsipp [ wpea [ 07D @0
2 2N —(1/2)
CaaWo Xy
=+ - — Q..
p3(x,) ()T, ( = b2> ;o (ny) e

Finally, we calculate the force exerted by the elastic medium to oppose the displacement of the disk; we
have

_ 2C44Wo / /( >_(l/2)dxdy 61)
o

4TEC44 awy

=K@
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In the limit as b — a, Egs. (30) and (31) reduce to the solution for a circular disk, namely,

2
w(r,0,0) = "Lsin 'L r>a, 0<0<2m,
T r
0, 0<r<a, 0€0<2m,
1(r,0) = p1(x,y)cost + pr(x,y)sinf = 2eqaT3wg r>a 0<0<n ,
o/ (r/a)zfl ’ ’ SO ’ (32)
2cquwo
r)=0—— 0<r<a, 0<60<2m,
pi(r,) nl1vVa* —r?
8C44CIWO
p=_—=""°
r,
where r, 0 are the polar coordinates.
For the case of an isotropic material, we have (Lekhnitskii (1963))
2(1 —v 2y
C11 =C33=%, 0122013:?1;7 C44 = U, (33)

where u, v are respectively the shear modulus and Poisson’s ratio. With Eq. (33), from Egs. (3) and (5), we
obtain

S1:S2:S3:1. (34)

Putting Eq. (34) into the equations for I'} and I'» (equations (10)), we see that they reduce to some
indeterminacies. In order to overcome this difficulty, we assume that

S1:1+i8, S2:1—i8, O<ex 1. (35)
Then, with Eq. (35), it can be shown that

kip=1%2ie(1 —v) + 0(&%), I = %_,_ 0(e),
—2v —2(1 — (36)
I :21(1 2v)+0(8)7 I; :%4-0(8).

The solution of the problem corresponding to an isotropic solid can be recovered from Eqgs. (30) and (31) by
using Egs. (33), (34) and (36) and then allowing ¢ — 0 in the resulting expressions with the result:

F(p, e ~
W('xmy? O) = [Efe))w(b (x7y) € in

07 (x,y) € 'Q:Ea

pi(x7y) = —2(1-2v)uwoa; x; a?—i+)' 0O ) (l = 17 2)7

G aK(e) ),DEa?Jri)’ (x,y) € Qs (37)

4(1 — v)puwy xr 3 /2

p3(x>y) ¥b(3—4V)K(6) a2 b2 ) (xvy) € &y,

P —16m(l — v)uwoa

(3 —4v)K(e)

Eq. (37) is in agreement with Kassir and Sih (1968) if their results are cast in Cartesian coordinates.
Finally, the solution corresponding to a circular disk in an isotropic medium can be deduced by letting
b — a in Eq. (37) with the result
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2wy . _a

w(r,H,O):Tsm , r=a, 0<0<2n,
r
{0, 0<r<a, 0<6<2m,
'L'(l"7 0) = —4(1=2v) uwy r>a 0<0<2n s
w34/ (r/ay—1 o (38)
8(1 — v)pwy

p3(r,0) :Fn(3 —4V)\/m, 0<r<a, 0<0<2m,
P —32u(1 — v)awo’

3—4y
which is in complete agreement with Collins (1962).

To gain an appreciation of the elegance and simplicity of the present method of solution, the reader is
urged to compare it with that employed by Kassir and Sih (1966, 1968), which makes use of the complicated
apparatus of elliptical coordinates and elliptical harmonics for the Laplace operator. The reader would
notice that the use of the present approach requires only a modicum of knowledge in elementary calculus,
yet the results obtained by this method, being given in Cartesian coordinates, are much clearer and easier to
interpret than those given in elliptical coordinates by Kassir and Sih.

5. The behavior of the stress field near the disk edge

The analytical results obtained in the previous section are useful in analyzing the mechanics of fracture
initiation at the edge of the disk. To this end, the behavior of the stress field in the immediate vicinity of the
edge of the disk needs to be investigated. To effect this, we construct a curve by displacing the contour of
the ellipse by a very small amount p along the outward normal (Fig. 1a). From elementary geometry, it
follows that the slope of the normal is

tana = % tan ¢, (39)
where ¢ is the parametric angle of the ellipse and « is the angle between the normal and the x-axis (Fig. 1a).
Then, the equation of the displaced curve is given by the relations:

X =acos¢ + pcosa, y = bsing + psina. (40)

The components of the shearing stress-vector, corresponding to the plane z = 0 along the normal and
tangential directions at an arbitrary point of the contour of the disk (Fig. 1b) can be computed using the
formulae:

Pu(x,¥) = pr(x,y)n1 + pa(x,y)na,

(41)
p(x,y) = =pi(x,y)ny + pa(x, y)na,
where n; and n, are the directional cosines of the normal; they are given by the equations
b .
0y = cos ¢ 7 = asin ¢ ’ (42)
(o) (o)
where

[1($) = a*sin’¢ + b* cos’¢.

Now, putting Eq. (40) into the second equation in Eq. (30) and expanding the resulting expressions in
p/a, we obtain for smaller p/a, the following expressions:
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(a) vA (b)

vA

<y

x2 yQ

;+§=1

Fig. 1. Derivation of the asymptotic representation of the stress field near the edge of the disk.

_ M o
Py =+ 0(Vola) (vy) € s, .
Ay ~
pen) = =t 0(Vola), (nr) € s,
where
A = \/§C44F3W0bCOS¢
- Vb k()
. (44)
A — \/5C44F3W()GSIH(]5
T Ve K@)
With Egs. (43) and (44) and using Eqs. (41) and (42), we have
p3(xay) = O’ (X,y) € E)ia
a cag 3w ~
Pu(x,y) = Em‘*‘ 0(\/ P/a)> (x,7) € Qu, (45)

p(x,y) = 0(\/;)75)7 (x,7) € Qu.

From Eq. (45), we observe that the material in the immediate vicinity of the disk experiences an edge-
sliding kinematic movement. According to the Griffith-—Irwin theory of fracture, this mode of fracture can
be best described by the corresponding stress intensity factor, which may be extracted from the equation:

Kuu = lim /2pp, (x, ). (46)
Putting Eq. (45) into Eq. (46), we thus obtain
a cal’3swy
Ky = 242300 47
iz )

The other two stress intensity factors, viz. K; and Kjj; are, of course, zero.
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For an isotropic material, Eq. (47) takes the form

a  2u(l—=2v)wy
Kll = ~A\/7 1/4 3
b (3 — 4K ()T (9)
which is in perfect agreement with the result obtained by Kassir and Sih (1968).
However, formula (47) should be cast in terms of the polar angle 0 (Fig. 1b) as pointed out by Fabrikant
(1987). Fabrikant’s suggestion was bitterly criticized by a number of writers, e.g. Kassir and Sih (1988), and
Zhang and Mai (1988). However, a recent look at the issue by Nuller et al. (1998) has confirmed the

correctness of Fabrikant’s suggestion.
We note that the angles ¢ and 6 are related by the equations

bcos0 asin0

cos¢ = T(H)’ sing = M0 (48)
With Eq. (48), we have
Ky = Km =0,
Ky — \/5044F3w0 <a2 sin’6 + »2 00529) 1/4. (49)
b K(e) \ a*sin’0+ b*cos?0

It is claimed that the solution given by Egs. (30) and (49) is new.
On noting that

@ sin*0 + b*cos20\ ~(1/6)
(a“ sin’6) + b* coszé)) = labR(O)] 7

(R(0) is the radius of curvature of the elliptical curve at the point corresponding to the polar angle 0), Eq.
(49) can be represented as

Kl = Klll = 07
Ky = C44F3WO¢11/3 . (50)
K(e)b*3R1/6(0)
For an isotropic material, Egs. (49) and (50) take the form
KI = Klll = 07
K — _\/§2u(1 —2v)wy (az sin’0 + bzcos20) v
b (3 —4v)K(e) \ a*sin’0 + b*cos?0/) (1)

—2u(1 = 2v)wpa'/?
(3 — 4v)K(e)b?/*RV/6(0)

6. Conclusion

In the present article, the problem of determining the stress distribution in a transversely isotropic solid
caused by an axial displacement of an embedded rigid elliptical disk is considered. Using the theory of two-
dimensional Fourier transforms, the problem is reduced to a two-dimensional integral equation whose
closed-form solution is deduced by using the theorems of Ferrers—Dyson and Galin. Explicit expressions for
the stress intensity factors at the edge of the disk are then extracted from this solution. These results might
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be used with a suitable failure criterion to interpret the mechanism of fracture initiation near the edge of the
disk. The method of solution developed in the article can be used for a wide variety of mixed boundary
value problems of elasticity theory concerning elliptical cracks and inclusions. Of further interest are the
corresponding problem for a system of coplanar elliptical disks and extension of the present results to
elastodynamics. Another problem for possible future research is the corresponding problem of a disk in the
form of an elliptical ring formed by two confocal ellipses. A solution of a problem of this kind in two-
dimensional elasticity, with the aid of Muskhelishvili’s complex variable approach, has been recently re-
ported by Kawakubo and Hirashima (1997). However, it is not clear how their results can be generalized to
three dimensions, especially since no analytical expressions are available in the literature for the Newtonian
potential of an elliptical ring.
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